Demand forecasting for new technology with a short history in a competitive environment: the case of the home networking market in South Korea
نویسندگان
چکیده
In the rapidly growing, competitive information and communications technology market, demand forecasting for new technologies is difficult, yet important. Our study describes a forecasting methodology designed for newly introduced technology for which limited data is available that uses algebraic estimation, Bayesian updating, and conjoint analysis. In the estimation procedure of diffusion model, initial information is derived through expert judgment, then updated using Bayes' theorem with available sales data. A conjoint analysis based on separate surveys of multilevel decision makers is used to derive a description of a competitive environment among multiple alternatives. The model is applied to the home networking (HN) market for new construction in South Korea, for which there exists various alternative technologies. The forecast shows that among HN technologies wireless LAN will command the highest market share at any time during the forecasted period. Based on simulation experiments, important factors affecting demand for HN technologies are identified—both consumer preference and the development of technological standards have a significant impact on the diffusion of HN technologies. © 2006 Elsevier Inc. All rights reserved.
منابع مشابه
Development of system decision support tools for behavioral trends monitoring of machinery maintenance in a competitive environment
The article is centred on software system development for manufacturing company that produces polyethylene bags using mostly conventional machines in a competitive world where each business enterprise desires to stand tall. This is meant to assist in gaining market shares, taking maintenance and production decisions by the dynamism and flexibilities embedded in the package as customers’ demand ...
متن کاملBayesian and Conjoint analysis on Forecasting the Home-Networking Market of South Korea in Competitive Environments
In this paper, we develop prelaunch forecasting model reflecting competition structure among various technologies and this model overcomes limitations of the Bass-type diffusion model which relies upon historical sales data. This paper applies our model to the HomeNetworking(H-N) market where there exist various alternative technologies in South Korea. First of all, we develop a Bayesian model ...
متن کاملApplication of a New Hybrid Method for Day-Ahead Energy Price Forecasting in Iranian Electricity Market
Abstract- In a typical competitive electricity market, a large number of short-term and long-term contracts are set on basis of energy price by an Independent System Operator (ISO). Under such circumstances, accurate electricity price forecasting can play a significant role in improving the more reasonable bidding strategies adopted by the electricity market participants. So, they cannot only r...
متن کاملApplication of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets
Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...
متن کاملA firefly algorithm for solving competitive location-design problem: a case study
This paper aims at determining the optimal number of new facilities besides specifying both the optimal location and design level of them under the budget constraint in a competitive environment by a novel hybrid continuous and discrete firefly algorithm. A real-world application of locating new chain stores in the city of Tehran, Iran, is used and the results are analyzed. In addition, several...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015